Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.364
Filtrar
1.
Respir Res ; 25(1): 161, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614991

RESUMO

BACKGROUND: Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS: Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS: Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS: Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.


Assuntos
Asma , Fumar Cigarros , Enfisema , Hipersensibilidade , Enfisema Pulmonar , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/etiologia , Inflamação
2.
Respir Res ; 25(1): 158, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594707

RESUMO

BACKGROUND: Airway remodelling plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Epithelial-mesenchymal transition (EMT) is a significant process during the occurrence of airway remodelling. Increasing evidence suggests that glucose transporter 3 (GLUT3) is involved in the epithelial mesenchymal transition (EMT) process of various diseases. However, the role of GLUT3 in EMT in the airway epithelial cells of COPD patients remains unclear. METHODS: We detected the levels of GLUT3 in the peripheral lung tissue of COPD patients and cigarette smoke (CS)-exposed mice. Two Gene Expression Omnibus GEO datasets were utilised to analyse GLUT3 gene expression profiles in COPD. Western blot and immunofluorescence were used to detect GLUT3 expression. In addition, we used the AAV9-GLUT3 inhibitor to reduce GLUT3 expression in the mice model. Masson's staining and lung function measurement were used detect the collagen deposition and penh in the mice. A cell study was performed to confirm the regulatory effect of GLUT3. Inhibition of GLUT3 expression with siRNA, Western blot, and immunofluorescence were used to detect the expression of E-cadherin, N-cadherin, vimentin, p65, and ZEB1. RESULTS: Based on the GEO data set analysis, GLUT3 expression in COPD patients was higher than in non-smokers. Moreover, GLUT3 was highly expressed in COPD patients, CS exposed mice, and BEAS-2B cells treated with CS extract (CSE). Further research revealed that down-regulation of GLUT3 significantly alleviated airway remodelling in vivo and in vitro. Lung function measurement showed that GLUT3 reduction reduced airway resistance in experimental COPD mice. Mechanistically, our study showed that reduction of GLUT3 inhibited CSE-induced EMT by down-regulating the NF-κB/ZEB1 pathway. CONCLUSION: We demonstrate that CS enhances the expression of GLUT3 in COPD and further confirm that GLUT3 may regulate airway remodelling in COPD through the NF-κB/ZEB1 pathway; these findings have potential value in the diagnosis and treatment of COPD. The down-regulation of GLUT3 significantly alleviated airway remodelling and reduced airway resistance in vivo. Our observations uncover a key role of GLUT3 in modulating airway remodelling and shed light on the development of GLUT3-targeted therapeutics for COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Remodelação das Vias Aéreas , Fumar Cigarros/efeitos adversos , Transportador de Glucose Tipo 3/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transição Epitelial-Mesenquimal , Células Epiteliais/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
3.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612871

RESUMO

Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.


Assuntos
Fumar Cigarros , Doença de Crohn , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Doença de Crohn/genética , Fumar Cigarros/efeitos adversos , RNA Ribossômico 16S , Perfilação da Expressão Gênica , Doença Pulmonar Obstrutiva Crônica/genética , Glicoproteínas de Membrana
5.
BMC Biotechnol ; 24(1): 13, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459479

RESUMO

OBJECTIVE: Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD. METHODS: Network pharmacology and molecular docking were applied to analyze the potential binding targets for Polyphyllin B and COPD. Commercial unfiltered CSE and LPS were used to construct BEAS-2B cell injury in vitro and COPD mouse models in vivo, respectively, which were treated with Polyphyllin B or fecal microbiota transplantation (FMT). CCK8, LDH and calcein-AM were used to detect the cell proliferation, LDH level and labile iron pool. Lung histopathology, Fe3+ deposition and mitochondrial morphology were observed by hematoxylin-eosin, Prussian blue staining and transmission electron microscope, respectively. ELISA was used to measure inflammation and oxidative stress levels in cells and lung tissues. Immunohistochemistry and immunofluorescence were applied to analyze the 4-HNE, LC3 and Ferritin expression. RT-qPCR was used to detect the expression of FcRn, pIgR, STAT3 and NCOA4. Western blot was used to detect the expression of Ferritin, p-STAT3/STAT3, NCOA4, GPX4, TLR2, TLR4 and P65 proteins. 16S rRNA gene sequencing was applied to detect the gut microbiota. RESULTS: Polyphyllin B had a good binding affinity with STAT3 protein, which as a target gene in COPD. Polyphyllin B inhibited CS-induced oxidative stress, inflammation, mitochondrial damage, and ferritinophagy in COPD mice. 16S rRNA sequencing and FMT confirmed that Akkermansia and Escherichia_Shigella might be the potential microbiota for Polyphyllin B and FMT to improve CSE and LPS-induced COPD, which were exhausted by the antibiotics in C + L and C + L + P mice. CSE and LPS induced the decrease of cell viability and the ferritin and LC3 expression, and the increase of NCOA4 and p-STAT3 expression in BEAS-2B cells, which were inhibited by Polyphyllin B. Polyphyllin B promoted ferritin and LC3II/I expression, and inhibited p-STAT3 and NCOA4 expression in CSE + LPS-induced BEAS-2B cells. CONCLUSION: Polyphyllin B improved gut microbiota disorder and inhibited STAT3/NCOA4 pathway to ameliorate lung tissue injury in CSE and LPS-induced mice.


Assuntos
Fumar Cigarros , Microbioma Gastrointestinal , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Linhagem Celular , Fumar Cigarros/efeitos adversos , Ferritinas/metabolismo , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Pulmão , Lesão Pulmonar/complicações , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Simulação de Acoplamento Molecular , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , RNA Ribossômico 16S , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
6.
Exp Lung Res ; 50(1): 53-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509754

RESUMO

OBJECTIVE: The aim of this study is to assess the impact of Liver X receptors (LXRs) on airway inflammation, airway remodeling, and lipid deposition induced by cigarette smoke and lipopolysaccharide (LPS) exposure in the lung. METHODS: Wild mice and LXR-deficient mice were exposed to cigarette smoke and LPS to induce airway inflammation and remodeling. In addition, some wild mice received intraperitoneal treatment with the LXR agonist GW3965 before exposure to cigarette smoke and LPS. Lung tissue and bronchoalveolar lavage fluid were collected to evaluate airway inflammation, airway remodeling and lipid deposition. RESULTS: Exposure to cigarette smoke and LPS resulted in airway inflammation, emphysema and lipid accumulation in wild mice. These mice also exhibited downregulated LXRα and ABCA1 in the lung. Treatment with GW3965 mitigated inflammation, remodeling and lipid deposition, while the deletion of LXRs exacerbated these effects. Furthermore, GW3965 treatment following exposure to cigarette smoke and LPS increased LXRα and ABCA1 expression and attenuated MyD88 expression in wild mice. CONCLUSION: LXRs demonstrate the potential to mitigate cigarette smoke and LPS- induced airway inflammation, emphysema and lipid disposition in mice.


Assuntos
Benzoatos , Benzilaminas , Fumar Cigarros , Enfisema , Enfisema Pulmonar , Animais , Camundongos , Remodelação das Vias Aéreas , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Enfisema/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Receptores X do Fígado/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL
7.
Clin Nutr ; 43(4): 960-968, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447490

RESUMO

BACKGROUND & AIMS: It remains unclear why the association between cigarette smoking and lung cancer was substantially stronger in Western countries than in Asian countries. As experimental studies have revealed that fat intake modulates tobacco carcinogen metabolism and the growth of transplanted or carcinogen-induced lung tumors in mice, the present study sought to investigate whether the association between cigarette smoking and lung cancer was modified by intake of total fat and types of fat (saturated, monounsaturated, and polyunsaturated fats) in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. METHODS: During a median follow-up of 8.9 years, 1,425 cases of lung cancer were documented from 100,864 participants eligible for the present analysis. Cox proportional hazards regression was used to calculate hazard ratios (HR) and 95% confidence intervals (CI). RESULTS: After adjustment for established or suspected confounders, the strength of the association between cigarette smoking and lung cancer was remarkably larger among individuals with high fat intake. HRs (95% CIs) comparing current with never smokers were 23.0 (13.4, 39.6), 32.7 (20.3, 52.8), and 59.8 (30.2, 118.2) for the tertile 1 (≤13.48 g/day), tertile 2 (13.49-21.89 g/day), and tertile 3 (≥21.90 g/day) of saturate fat intake, respectively. A similar pattern of the non-significant interaction was observed when the accumulated amount of cigarette smoking (1-19, 20-39, and ≥40 vs. 0 pack-years) was entered into the regression models. CONCLUSIONS: The present study showed that lung cancer risk associated with both the status and accumulated amount of cigarette smoking was remarkably stronger in individuals with high intakes of fat, particularly saturated fat. However, this interaction was not statistically significant and thus warrants further investigations in other studies.


Assuntos
Fumar Cigarros , Neoplasias Pulmonares , Masculino , Humanos , Animais , Camundongos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Estudos Prospectivos , Fumar Cigarros/efeitos adversos , Fumar Cigarros/epidemiologia , Gorduras na Dieta/efeitos adversos , Modelos de Riscos Proporcionais , Carcinógenos , Fatores de Risco
8.
Int Immunopharmacol ; 131: 111832, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460301

RESUMO

Cigarette smoke is widely known as contributing to chronic inflammation underlying several airway diseases, such as chronic obstructive pulmonary disease (COPD) and lung cancer. In our previous studies we found that the lung of both COPD and cancer patients were characterized by the presence and activation of the AIM2 inflammasome. Here, we wanted to investigate the upstream step during the establishment of chronic lung inflammation after cigarette smoke exposure. We took advantage of a mouse model of smoking exposure and public scRNAseq data. We found that AIM2 mRNA was expressed in both alveolar type II, B cells, T regulatory (Treg) and macrophages detected in the lung of non-smokers (n = 4) and smokers (n = 3). The activation of AIM2 in smoking mice by using PolydA:dT did not alter cigarette-smoke-induced alveoli enlargement and mucus production, rather it induced higher recruitment of immunosuppressive cells, such as non-active dendritic cells (DCs), Arginase I+ macrophages, myeloid-derived suppressor cells (MDSC) and Tregs. In addition, the inflammatory environment after AIM2 activation in smoking mice was characterized by higher levels of IL-1α, IL-1ß, IL-33, TNFα, LDH, IL-10 and TGFß. This scenario was not altered after the pharmacological inhibition of both caspase-1 and STING pathway. In conclusion, these data suggest that chronic inflammation after cigarette smoke exposure is associated with AIM2 activation, which could lead towards cigarette smoke-associated lung diseases.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Fumar Cigarros/efeitos adversos , Proteínas de Ligação a DNA/genética , Inflamassomos/metabolismo , Inflamação , Pulmão/metabolismo , Camundongos Endogâmicos C57BL
9.
Respir Res ; 25(1): 148, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555458

RESUMO

BACKGROUND: Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and antifibrotic effects. Small airway remodeling is the main pathology of chronic obstructive pulmonary disease (COPD) and is caused by epithelial-to-mesenchymal transition (EMT) and fibroblast differentiation and proliferation. Effective therapies are still lacking. This study aimed to investigate the role of AXT in small airway remodeling in COPD and its underlying mechanisms. METHODS: First, the model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The effects of AXT on the morphology of CS combined with CSE -induced emphysema, EMT, and small airway remodeling by using Hematoxylin-eosin (H&E) staining, immunohistochemical staining, and western blot. In addition, in vitro experiments, the effects of AXT on CSE induced-EMT and fibroblast function were further explored. Next, to explore the specific mechanisms underlying the protective effects of AXT in COPD, potential targets of AXT in COPD were analyzed using network pharmacology. Finally, the possible mechanism was verified through molecular docking and in vitro experiments. RESULTS: AXT alleviated pulmonary emphysema, EMT, and small airway remodeling in a CS combined with CSE -induced mouse model. In addition, AXT inhibited the EMT process in airway cells and the differentiation and proliferation of fibroblasts. Mechanistically, AXT inhibited myofibroblast activation by directly binding to and suppressing the phosphorylation of AKT1. Therefore, our results show that AXT protects against small airway remodeling by inhibiting AKT1. CONCLUSIONS: The present study identified and illustrated a new food function of AXT, indicating that AXT could be used in the therapy of COPD-induced small airway remodeling.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Animais , Fumar Cigarros/efeitos adversos , Remodelação das Vias Aéreas , Simulação de Acoplamento Molecular , Transdução de Sinais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Tabaco/toxicidade , Xantofilas
10.
Artigo em Inglês | MEDLINE | ID: mdl-38544929

RESUMO

Background: The incidence of chronic obstructive pulmonary disease (COPD) is increasing year by year. Kruppel-like factor 6 (KLF6) plays an important role in inflammatory diseases. However, the regulatory role of KLF6 in COPD has not been reported so far. Methods: The viability of human bronchial epithelial cells BEAS-2B induced by cigarette smoke extract (CSE) was detected by CCK-8 assay. The protein expression of KLF6 and sirtuin 4 (SIRT4) was appraised with Western blot. RT-qPCR and Western blot were applied to examine the transfection efficacy of sh-KLF6 and Oe-KLF6. Cell apoptosis was detected using flow cytometry. The levels of inflammatory factors IL-6, TNF-α and IL-1ß were assessed with ELISA assay. DCFH-DA staining was employed for the detection of ROS activity and the levels of oxidative stress markers SOD, CAT and MDA were estimated with corresponding assay kits. The mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content and Complex I activity were evaluated with JC-1 staining, ATP colorimetric/fluorometric assay kit and Complex I enzyme activity microplate assay kit. With the application of mitochondrial permeability transition pore detection kit, mPTP opening was measured. Luciferase report assay was employed to evaluate the activity of SIRT4 promoter and chromatin immunoprecipitation (ChIP) to verify the binding ability of KLF6 and SIRT4 promoter. Results: KLF6 expression was significantly elevated in CSE-induced cells. KLF6 was confirmed to suppress SIRT4 transcription. Interference with KLF6 expression significantly inhibited cell viability damage, cell apoptosis, inflammatory response, oxidative stress and mitochondrial dysfunction in CSE-induced BEAS-2B cells, which were all reversed by SIRT4 overexpression. Conclusion: Silencing KLF6 alleviated CSE-induced mitochondrial dysfunction in bronchial epithelial cells by SIRT4 upregulation.


Assuntos
Fumar Cigarros , Doenças Mitocondriais , Doença Pulmonar Obstrutiva Crônica , Sirtuínas , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Regulação para Cima , Linhagem Celular , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Fumar Cigarros/efeitos adversos , Apoptose , Células Epiteliais/metabolismo , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/efeitos adversos , Proteínas Mitocondriais/metabolismo , Sirtuínas/genética
11.
Medicina (Kaunas) ; 60(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399610

RESUMO

Background and Objectives: The negative effects of smoking on the musculoskeletal system were presented by many authors, although the relationship between smoking and osteoarthritis remains unclear. The aim of this paper was to investigate the negative effects of smoking on meniscal tissue in osteoarthritic knees by microscopic examination, by adapting the Bonar scoring system and its modifications. Materials and Methods: The study involved 34 patients with varus knees, from whom 65 samples of knee menisci were obtained. The mean age in the studied group was 65.385 years. The smoking status of the patients concluded that there were 13 smokers and 21 nonsmokers. Results: Among smokers, the mean classical Bonar score was 8.42 and the mean modified Bonar score was 6.65, while nonsmokers were characterized by scores of 8.51 and 7.35, respectively. There was a statistically significant negative correlation between the number of cigarettes and the collagen in the medial meniscus (p = 0.0197). Moreover, in the medial meniscus, the modified Bonar score correlated negatively with the number of cigarettes (p = 0.0180). Similarly, such a correlation was observed between the number of cigarettes and the modified Bonar score in the lateral meniscus (p = 0.04571). Furthermore, no correlation was identified between the number of cigarettes and the classical Bonar score in the lateral meniscus. There was a statistically significant difference in the collagen variable value between the smokers and nonsmokers groups (p = 0.04525). Conclusions: The microscopic investigation showed no differences in the menisci of smokers and nonsmokers, except for the collagen, which was more organized in smokers. Moreover, the modified Bonar score was correlated negatively with the number of cigarettes, which supports the role of neovascularization in meniscus pathology under the influence of tobacco smoking.


Assuntos
Fumar Cigarros , Menisco , Humanos , Idoso , Projetos Piloto , Fumar Cigarros/efeitos adversos , Fumar/efeitos adversos , Colágeno , Imageamento por Ressonância Magnética
12.
Nutrients ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337717

RESUMO

Lung inflammation and alveolar enlargement are the major pathological conditions of chronic obstructive pulmonary disease (COPD) patients. Rice bran oil (RBO), a natural anti-inflammatory and antioxidative agent, has been used for therapeutic purposes in several inflammatory diseases. This study aimed to investigate the anti-inflammatory and antioxidative effect of RBO on a cigarette smoke extract (CSE)-induced emphysema model in mice. The results indicated that CSE significantly induced airspace enlargement in mouse lung. Increased inflammatory cells, macrophage, and TNF-alpha levels in bronchoalveolar lavage fluid (BALF) were noticed in CSE-treated mice. RBO (low and high dose)-supplemented mice showed decreased total BALF inflammatory cell, macrophage, and neutrophil numbers and TNF-alpha levels (p < 0.05). Additionally, the administration of RBO decreased the mean linear alveolar intercept (MLI) in the CSE-treated group. Additionally, RBO treatment significantly increased the total antioxidant capacity in both mouse BALF and serum. However, RBO did not have an effect on the malondialdehyde (MDA) level. These findings suggested that RBO treatment ameliorates lung inflammation in a CSE-induced emphysema mice model through anti-inflammatory and antioxidant pathways. Therefore, the supplementation of RBO could be a new potential therapeutic to relieve the severity of COPD.


Assuntos
Fumar Cigarros , Enfisema , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Antioxidantes/metabolismo , Pulmão/patologia , Óleo de Farelo de Arroz/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Anti-Inflamatórios/uso terapêutico , Pneumonia/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Enfisema/induzido quimicamente , Enfisema/tratamento farmacológico , Produtos do Tabaco
13.
Artigo em Inglês | MEDLINE | ID: mdl-38333774

RESUMO

Purpose: Circular RNA (circRNA) plays an important role in various biological processes. However, their functions in cigarette smoke extract (CSE) induced human normal lung epithelial cells (BEAS-2B) injury remain vague. The study aimed to explore circRNA expression profiles and reveal their potential roles in CSE-treated BEAS-2B cells. Methods: 5% CSE exposure for 24 hours were used to build the BEAS-2B cells ferroptosis model. Differentially expressed circRNAs (DECs) were identified by next-generation RNA sequencing. Six randomly selected DECs were validated via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis were conducted to clarify the potential functions of the DECs. Furthermore, the role of hsa_circ_0025843 in CSE-related BEAS-2B cells ferroptosis was confirmed. Results: 5% CSE exposure induced BEAS-2B cells ferroptosis. Fifty-one up-regulated cirRNAs and 80 down-regulated circRNAs were revealed in CSE-treated BEAS-2B cells. Hsa_circ_0003461, hsa_circ_0007548, hsa_circ_0025843, hsa_circ_0068896, hsa_circ_0005832, and hsa_circ_0053378 were selected randomly to validate the reliability of next-generation RNA sequencing by qRT-PCR. After KEGG pathway analysis, DECs were found to participate in the process of EGFR tyrosine kinase inhibitor resistance and glycerophospholipid metabolism. The knockdown of hsa_circ_0025843 significantly alleviated CSE-induced BEAS-2B cells ferroptosis. Conclusion: The study indicated the circRNA expression profiles in CSE-treated BEAS-2B cells. Hsa_circ_0025843 alleviated CSE induced BEAS-2B cells ferroptosis, which might be a potential therapeutic target of CSE related lung injury.


Assuntos
Fumar Cigarros , Ferroptose , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , RNA Circular/genética , Reprodutibilidade dos Testes , Fumar Cigarros/efeitos adversos , Ferroptose/genética , RNA/genética , Células Epiteliais/metabolismo , MicroRNAs/genética
14.
J Cardiothorac Surg ; 19(1): 58, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317168

RESUMO

BACKGROUND: This study examined the effect of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway on chronic obstructive pulmonary disease (COPD) and the potential molecular mechanism. METHODS: A COPD mouse model was established by cigarette smoke exposure and administered with either ML385 or dimethyl fumarate (DMF). Airway resistance of mice was detected. IL-1ß and IL-6 levels in mice alveolar lavage fluid were examined by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining and immunohistochemical of lung tissues were utilized to detect lung injury and NLRP3 expression. DMF was used to treat COPD cell model constructed by exposing normal human bronchial epithelial (NHBE) cells to cigarette smoke extract. NHBE cells were transfected by NLRP3-expression vectors. Expression of proteins was detected by Western blot. RESULTS: COPD mice showed the enhanced airway resistance, the inactivated Nrf2/HO-1 pathway and the overexpressed NLRP3, Caspase-1 and GSDMD-N proteins in lung tissues, and the increased IL-1ß and IL-6 levels in alveolar lavage fluid. ML385 treatment augmented these indicators and lung injury in COPD mice. However, DMF intervention attenuated these indicators and lung injury in COPD mice. Nrf2/HO-1 pathway inactivation and overexpression of NLRP3, Caspase-1 and GSDMD-N proteins were observed in COPD cells. DMF intervention activated Nrf2/HO-1 pathway and down-regulated NLRP3, Caspase-1 and GSDMD-N proteins in COPD cells. However, NLRP3 overexpression abolished the effect of DMF on COPD cells. CONCLUSION: Nrf2/HO-1 pathway activation may alleviate inflammation in COPD by suppressing the NLRP3-related pyroptosis. Activating the Nrf2/HO-1 pathway may be an effective method to treat COPD.


Assuntos
Fumar Cigarros , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Piroptose , Interleucina-6 , Heme Oxigenase-1/metabolismo , Fumar Cigarros/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação , Caspases
15.
Respir Res ; 25(1): 66, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317159

RESUMO

BACKGROUND: Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity for HDAC6 in COPD. METHODS: Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, immunohistochemical staining, and western blot. The human lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of CAY10603. RESULTS: HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. CAY10603 significantly attenuated the release of TGF-ß1 induced by CSE. CAY10603 significantly increased the E-cadherin levels in TGF-ß1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-ß1 induced cell migration. CONCLUSIONS: These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating epithelial barrier dysfunction and reversing EMT via the TGF-ß1/Smad2/3 signalling pathway.


Assuntos
Carbamatos , Fumar Cigarros , Oxazóis , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Remodelação das Vias Aéreas , Caderinas/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Desacetilase 6 de Histona/metabolismo , Ocludina , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Produtos do Tabaco , Fator de Crescimento Transformador beta1/metabolismo
16.
Basic Clin Pharmacol Toxicol ; 134(4): 543-555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378277

RESUMO

Smoking during pregnancy is one of the leading causes for adverse pregnancy outcomes. We studied parental smoking both before and during pregnancy in a retrospective cohort of 21 472 singleton pregnancies. Although most smoking women (74%) ceased tobacco use, there was possible gestational exposure to maternal cigarette smoking in every fifth pregnancy. Continued smoking throughout pregnancy was more prevalent in the partners (22%) than in the pregnant women (7%). The smoking behaviour of the women, especially the number of cigarettes smoked per day (CPD), before and in early pregnancy predicted the continuation of smoking throughout the pregnancy and could be used in identifying high risk groups. In addition, their partner's smoking habits both before and during pregnancy, were associated with the likelihood that the woman would continue to smoke during her pregnancy (rs ≈ 0.4). Furthermore, continued smoking of both parents were associated with decreased birth weight, head circumference and Apgar score, and increased duration of hospital stay and need for special care after birth. Consequently, addressing the lifestyles of both parents in the health care and maternity clinics could help in reducing maternal cigarette smoking during pregnancy and the adverse pregnancy outcomes associated with smoking.


Assuntos
Fumar Cigarros , Humanos , Feminino , Gravidez , Fumar Cigarros/efeitos adversos , Fumar Cigarros/epidemiologia , Estudos Retrospectivos , Gestantes , Pais , Fumar/efeitos adversos , Fumar/epidemiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38288346

RESUMO

Background: Macrophage-derived matrix metalloproteinase 12 (MMP12) can cause destruction of lung tissue structure and plays a significant role in the development and progression of chronic obstructive pulmonary disease (COPD). MTOR is a serine/threonine kinase that plays a crucial role in cell growth and metabolism. The activity of MTOR in the lung tissues of COPD patients also shows significant changes. However, it is unclear whether MTOR can regulate the development and progression of COPD by controlling MMP12. This study primarily investigates whether MTOR in macrophages can affect the expression of MMP12 and participate in the progression of COPD. Methods: We tested the changes in MTOR activity in macrophages exposed to cigarette smoke (CS) both in vivo and in vitro. Additionally, we observed the effect of MTOR on the expression of MMP12 in macrophages and on lung tissue inflammation and structural damage in mice, both in vivo and in vitro, using MTOR inhibitors or gene knockout mice. Finally, we combined inhibitor treatment with gene knockout to demonstrate that MTOR primarily mediates the expression of MMP12 through the NF-κB signaling pathway. Results: Exposure to CS can enhance MTOR activity in mouse alveolar macrophages. Inhibiting the activity of MTOR or suppressing its expression leads to increased expression of MMP12. Myeloid-specific knockout of MTOR expression can promote the occurrence of CS-induced pulmonary inflammation and emphysema in mice. Inhibiting the activity of NF-κB can eliminate the effect of MTOR on MMP12. Conclusion: Macrophage MTOR can reduce the expression of MMP12 by inhibiting NF-κB, thereby inhibiting the occurrence of COPD inflammation and destruction of lung tissue structure. Activating the activity of macrophage MTOR may be beneficial for the treatment of COPD.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Fumar Cigarros/efeitos adversos , Inflamação/metabolismo , Pulmão , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/complicações , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Produtos do Tabaco
18.
Gastric Cancer ; 27(2): 197-209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231449

RESUMO

This study aims at providing an accurate and up-to-date quantification of the dose-response association between cigarette smoking and gastric cancer (GC) risk, overall and by subsite. We conducted a systematic review and meta-analysis of case-control and cohort studies on the association between cigarette smoking and GC risk published up to January 2023. We estimated pooled relative risks (RR) of GC and its subsites according to smoking status, intensity, duration, and time since quitting. Among 271 eligible articles, 205 original studies were included in this meta-analysis. Compared with never smokers, the pooled RR for GC was 1.53 (95% confidence interval; CI 1.44-1.62; n = 92) for current and 1.30 (95% CI 1.23-1.37; n = 82) for former smokers. The RR for current compared with never smokers was 2.08 (95% CI 1.66-2.61; n = 21) for gastric cardia and 1.48 (95% CI 1.33-1.66; n = 8) for distal stomach cancer. GC risk nonlinearly increased with smoking intensity up to 20 cigarettes/day (RR:1.69; 95% CI 1.55-1.84) and levelled thereafter. GC risk significantly increased linearly with increasing smoking duration (RR: 1.31; 95% CI 1.25-1.37 for 20 years) and significantly decreased linearly with increasing time since quitting (RR: 0.65; 95% CI 0.44-0.95 for 30 years since cessation). The present meta-analysis confirms that cigarette smoking is an independent risk factor for GC, particularly for gastric cardia. GC risk increases with a low number of cigarettes up to 20 cigarettes/day and increases in a dose-dependent manner with smoking duration.


Assuntos
Fumar Cigarros , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/etiologia , Fumar Cigarros/efeitos adversos , Fatores de Risco , Estudos de Coortes
19.
Environ Toxicol ; 39(5): 2634-2641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38205902

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a widespread inflammatory disease with a high mortality rate. Long noncoding RNAs play important roles in pulmonary diseases and are potential targets for inflammation intervention. METHODS: The expression of small nucleolar RNA host gene 6 (SNHG6) in mouse lung epithelial cell line MLE12 with or without cigarette smoke extract (CSE) treatment was first detected using quantitative reverse-transcription PCR. ELISA was used to evaluate the release of inflammatory cytokines (TNF-α, IL-1ß, and IL-6). The binding site of miR-182-5p with SNHG6 was predicted by using miRanda, which was verified by double luciferase reporter assay. RESULTS: Here, we revealed that SNHG6 was upregulated in CS-exposed MLE12 alveolar epithelial cells and lungs from COPD-model mice. SNHG6 silencing weakened CS-induced inflammation in MLE12 cells and mouse lungs. Mechanistic investigations revealed that SNHG6 could upregulate IκBα kinase through sponging the microRNA miR-182-5p, followed by activated NF-κB signaling. The suppressive effects of SNHG6 silencing on CS-induced inflammation were blocked by an miR-182-5p inhibitor. CONCLUSION: Overall, our findings suggested that SNHG6 regulates CS-induced inflammation in COPD by activating NF-κB signaling, thereby offering a novel potential target for COPD treatment.


Assuntos
Fumar Cigarros , MicroRNAs , Pneumonia , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Camundongos , Animais , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fumar Cigarros/efeitos adversos , Pneumonia/induzido quimicamente , Pneumonia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Inflamação/genética , Inflamação/metabolismo
20.
J Atheroscler Thromb ; 31(3): 189-200, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220184

RESUMO

The detrimental effects of cigarette smoking on cardiovascular health, particularly atherosclerosis and thrombosis, are well established, and more detailed mechanisms continue to emerge. As the fundamental pathophysiology of the adverse effects of smoking, endothelial dysfunction, inflammation, and thrombosis are considered to be particularly important. Cigarette smoke induces endothelial dysfunction, leading to impaired vascular dilation and hemostasis regulation. Factors contributing to endothelial dysfunction include reduced bioavailability of nitric oxide, increased levels of superoxide anion, and endothelin release. Chronic inflammation of the vascular wall is a central pathogenesis of smoking-induced atherosclerosis. Smoking systemically elevates inflammatory markers and induces the expression of adhesion molecules and cytokines in various tissues. Pattern recognition receptors and damage-associated molecular patterns play crucial roles in the mechanism underlying smoking-induced inflammation. Smoking-induced DNA damage and activation of innate immunity, such as the NLRP3 inflammasome, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, and Toll-like receptor 9, are shown to amplify inflammatory cytokine expression. Cigarette smoke-induced oxidative stress and inflammation influence platelet adhesion, aggregation, and coagulation via adhesion molecule upregulation. Furthermore, it affects the coagulation cascade and fibrinolysis balance, causing thrombus formation. Matrix metalloproteinases contribute to plaque vulnerability and atherothrombotic events. The impact of smoking on inflammatory cells and adhesion molecules further intensifies the risk of atherothrombosis. Collectively, exposure to cigarette smoke exerts profound effects on endothelial function, inflammation, and thrombosis, contributing to the development and progression of atherosclerosis and atherothrombotic cardiovascular diseases. Understanding these intricate mechanisms highlights the urgent need for smoking cessation to protect cardiovascular health. This comprehensive review investigates the multifaceted mechanisms through which smoking contributes to these life-threatening conditions.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Fumar Cigarros , Trombose , Humanos , Fumar Cigarros/efeitos adversos , Doenças Cardiovasculares/metabolismo , Fumar/efeitos adversos , Endotélio Vascular/metabolismo , Trombose/complicações , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...